

Hammer tutorial:
How to create a physics-based cloner

Half Life 2: Episode 2

Version 1.0

Author: Jorge Montolio Conde

Document Date: 09/07/2015

Summary

How does the Cloner work?

 The player picks up an object with his gravity gun

 The player throws the object.

 The player teleports to the object, once it lands. He is now controlling a "clone". If he looks at the position where he came from, he can

see his original body standing there.

 After a few seconds, the player goes back to his original body. In the place of his "clone" we spawn a dummy.

Required entities

 logic_auto

 info_player_start

 prop_physics

 phys_keepupright

 logic_relay

 logic_timer

 logic_compare

 trigger_teleport

 env_entity_maker

 point_template

 npc_barney

 point_velocitysensor

Part 1: Creating a physics based teleporter

Creating the objects

1. We are going to start by creating an info_player_start. This entity represents the spawn point of the player in the level.

2. Now we are going to create the object that we will use as a cloner. This object needs to be an entity called prop_physics.

 Inside the properties choose a name for the object. I used the name "Cloner".

 The physics object does not have any model attached to it, so next we are going to choose a model. We do this by selecting a "World Model"

inside the prop_physics properties. It is very important to choose an object with a flat base. Otherwise, the player will get teleported with

weird angles. For this tutorial we are oing to choose the model furnituretable001a_chunk01.mdl

http://furnituretable001a_chunk01.md/

Cloner

Property Value

Name Cloner

World model furnituretable001a_chunk01.mdl

3. Next, we are going to create a phys_keepupright. This object will make the Cloner face up permanently. That way, the Cloner cannot tilt

when we throw it. If we do not use this object, we have the risk of teleporting to a tilted object, which will tilt the camera as well.

 Create an entity phys_keepupright with the following properties:

http://furnituretable001a_chunk01.md/

keepupright_cloner

Property Value What it does

Name keepupright_cloner

Target Entity Cloner Selects the entity that needs to be facing up. In our case, the

Cloner.

Angular Limit 360-infinity This is the amount of degrees that the phys_keepupright

needs to compensate for, per second. This means that if the

cloner rotates 360 degrees in one second, the

phys_keepupright will apply an opposite rotation of -360 to

compensate. You can set it to a higher number, although 360

seems to work fairly well.

4. Next, we are going to create a point_velocitysensor for the Cloner. This velocity sensor will detect when the cloner has stopped, so that we

can teleport to it safely. Teleporting to a moving object will create all kind of weird situations that we want to avoid.

 Create a point_velocitysensor with the following properties:

velocitysensor_cloner

Property Value What it does

Name velocitysensor_cloner

Target entity name Cloner The item which velocity we are going to measure

IMPORTANT: The Cloner should be in the map at the beginning of the level. DO NOT try to spawn it with an entity_maker or the like, because it

will break the phys_keepupright

Setting up the teleporter’s destination

1. To teleport ourselves to the Cloner, we are going to use a trigger_teleport. Trigger_teleports teleport anything that collides with them to a

certain location of our choosing (or in our case, to a certain object). They work automatically, i.e., they will teleport things as soon as they

are enabled.

 Create a brush that covers the whole area where you want to use the Cloner. Be sure to include every area; if the Cloner gets out of this

trigger, it will stop working.

 Click on "To entity" and open its properties. In the Class drop-down menu, select trigger_teleport.

2. Now we are going to set up some properties in the trigger_teleport.

 In the Class info tab:

trigger_teleport_to_cloner

Property Value What it does

Name trigger_teleport_to_cloner

Start

Disabled

Yes

Remote

destination

Cloner When an object collides with this trigger, the object will be send to "Remote destination".

This remote destination can be an entity, like a prop_physics. By setting the "Remote

destination" to "Cloner", we are telling the trigger to teleport things to the Cloner's

position.

 In the flags tab:

trigger_teleport_to_cloner (Flags tab)

Flag Value What it does

Clients Checked Make sure that the trigger only teleports the player. This is important, because the trigger is covering the

whole room.

All

other

flags

Unchecked

Creating a one-way teleporter

 Now that we have all of these elements, we can create the teleporter.

1. First, we need to detect when the Cloner stops. Once it stops, we know it is safe to teleport. We are going to create a logic_compare that

will compare the Cloner's velocity to zero.

 Create a logic_compare entity

 Change its name to compare_velocity_to_zero. Leave both Value and Compare Value as 0

compare_velocity_to_zero

Property Value

Name compare_velocity_to_zero

Compare

value

0

2. Now we go into the point_velocitysensor, and set up the following outputs:

compare_velocity_to_zero (Outputs)

My

Output

Target Entity Target

Input

Paramete

r

Dela

y

Only Once What it does

Velocity compare_velocity_to_zero SetValue 0.00 No Whenever the velocity of the Cloner

changes, the velocity output gets trigger.

This command will send the Cloners velocity

to the logic compare.

Velocity compare_velocity_to_zero Compare 0.01 No Once the logic_compare has the Cloner's

velocity, we tell it to compare it to "Compare

Value" (in our case, Compare value is zero).

This effectively checks if the planks velocity

is zero at any moment.

3. Now we need to teleport the player if the Cloner's velocity is zero. HOWEVER, we do not want to teleport the player every time the Cloner's

velocity is zero. If the Cloner is resting on the floor, we do not want the player to teleport to it. Hence, we only want to teleport the player

after he picks up the Cloner and throws it. We are going to create a logic_relay, which is going to be in charge of activating the teleporting

trigger. Whenever we do not want the player to teleport, we will disable this trigger.

 Create a logic_relay

 Change the following properties

relay_teleport_to_cloner

Property Value What it does

Name relay_teleport_to_cloner

Start Disabled Yes

 Set the following outputs inside the relay:

relay_teleport_to_cloner (Outputs)

My

Output

Target Entity Target

Input

Parameter Delay Only

Once

What it does

OnTrigger trigger_teleport_to_cloner Enable 0.03 No Whenever this relay is triggered, it will

enable the teleport trigger. This will

effectively teleport the player to the

Cloner.

4. Now that we have the relay, we can trigger it every time the Cloner is not moving. The logic for the relay is going to be as follows:

 To implement it, we are going to add some outputs. In the logic_compare, add the following outputs:

compare_velocity_to_zero (Outputs)

My

Output

Target Entity Target

Input

Parameter Delay Only

Once

What it does

OnEqualTo relay_teleport_to_cloner Trigger 0.00 No This means that whenever the Cloner's

velocity is zero, the relay will be

triggered.

 In the Cloner, add the following outputs:

Cloner (Outputs)

My Output Target Entity Target

Input

Parameter Delay Only

Once

What it does

OnPhysGunDrop relay_teleport_to_cloner Enable 0.00 No Only enables the relay after the player has

picked it up and dropped it.

 Finally, we are going to add an output to the logic_relay. After the player has teleported, we want to return all of the objects to their

original state, so that the player can teleport again if he wants to. For that, we add these two outputs to the logic_relay:

relay_teleport_to_cloner (Outputs)

My

Output

Target Entity Target

Input

Parameter Delay Only

Once

What it does

OnTrigger trigger_teleport_to_cloner Disable 0.04 No

OnTrigger relay_teleport_to_cloner Disable 0.05 No

Step 2: Creating a timed teleporter

 For this step, we are going to set a timer so that the player goes back to his original position after a certain delay.

Creating the objects

1. First, we are going to create an info_teleport_destination. This represents the original position of the player, before he teleported to the

Cloner (NOT the position before he threw it).

 Change the following properties in the info_teleport_destination:

teleport_origin

Property Value What it does

Name teleport_origin

Parent !player The info_teleport_destination will go wherever the player goes

 IMPORTANT: Make sure that the info_teleport_destination overlaps with the info_player_start perfectly. Their centers should be on

the same point in all the axes. This will reduce the chances of the player being stuck on something after he comes back from the

teleporting.\

2. Sometimes things don't get parented to the player correctly. We are going to use a logic_auto to make sure our info_teleport_destination

gets parented to the player.

 Create a logic_auto

 Add the following outputs:

logic_auto (Outputs)

My Output Target Entity Target Input Parameter Delay Only Once What it does

OnMapSpawn teleport_origin SetParent !player 0.00 No

3. The last object we need is a logic_timer. After the timer runs out, the player will go back to the teleport origin.

 Create a logic_timer:

 Change the following properties:

teleport_timer

Property Value What it does

Name teleport_timer

Start

Disabled

Yes

Refire

Interval

5 Time before the player goes back to his original position, after he has teleported

4. The last thing we need to create is a trigger_teleport. Like the previous trigger, we need it to cover the whole room (or the area where we

want to use the teleport)

 Create a trigger_teleport

 Change the following properties:

trigger_teleport_back

Property Value What it does

Name trigger_teleport_back

Start Disabled Yes Like the other trigger, this trigger is going to be disabled most of the

time

Remote destination teleport_origin

 Make sure that the trigger only collides with the player in the flags tab

trigger_teleport_back (Flags tab)

Flag Value What it does

Clients Checked

All other flags Unchecked

Setting the logic for teleporting back

1. This is what we will do for teleporting back:

2. To start we will need to add some outputs to the relay_teleport_to_cloner

 The first thing we need to do is to disconnect the teleport_origin from the player, right before we teleport to the Cloner. That way, the

teleport_origin stays at our original position, and we can go back to it later. We also want to activate the teleport_timer at this point.

 For that, we add the following outputs to the relay_teleport_to_cloner:

relay_teleport_cloner (Outputs)

My

Output

Target Entity Target

Input

Parameter Delay Only

Once

What it does

OnTrigger teleport_origin ClearParent 0.00 No Drops the teleport_origin right before we

teleport to the Cloner, so that we can go back

to it later

OnTrigger teleport_timer Enable 0.00 No

3. After the teleport_timer runs out, we need to send the player back to the origin.

 We add the following outputs to the timer:

teleport_timer (Outputs)

My

Output

Target Entity Target

Input

Parameter Delay Only

Once

What it does

OnTimer trigger_teleport_back Enable 0.03 No First, we want to activate the trigger that will

send us back to our original position.

OnTimer trigger_teleport_back Disable 0.04 No After that, we will disable the trigger, since the

teleport is done

OnTimer teleport_origin SetParent !player 0.05 No Once the player has teleported back, we parent

the teleport_origin to the player again.

OnTimer teleport_timer Disable 0.06 No Finally, we disable the timer. Otherwise the

timer will start over and the player will keep

teleporting to the Cloner's position.

(Optional) Step 3: Finishing the Cloner = spawning dummies

 In this section, we are going to do two things:

 Spawn a dummy after you teleport to the cloner. This dummy represents your "original body".

 Spawn a dummy after you teleport back. This dummy represents your "clone".

 Keep in mind that for this, we will need an npc model. Since Gordon Freeman does not have a model, your level's character should be

someone else (for my level I chose Barney)

Creating the spawners

1. First thing we need are the dummies (npc_barneys)

 First we create one npc_barney for the original body

original_dummy

Property Value

Name original_dummy

 Then we create another npc_barney, this time for the Clone

clone_dummy

Property Value What it does

Name clone_dummy

FX Color a color of your

choosing

Changing the FX Color will let us differentiate between the original body and the clone body.

This property is optional.

 Like we did with the teleport_origin, we need to make sure the dummies are in the exact same position as the info_player_start

2. Next, we are going to create two point_templates. Point_templates are necessary when we want to spawn an object,

 We create one point_template for clone_dummy

template_clone_dummy

Property Value What it does

Name template_clone_dummy

Template 1 clone_dummy We can add more objects to the other template slots, and these objects will

spawn along with the dummy.

 And one point_template for the original_dummy

template_clone_dummy

Property Value

Name template_original_dummy

Template 1 original_dummy

 Finish by putting these two boxes in the same position as the npc_barneys and the info_player_start

3. The last step is to create the env_entity_makers. These entities are the ones in charge of spawning the dummies. They will spawn whatever

is in a point_template of our choosing.

 Create one env_entity_maker for the clone dummy

maker_clone_dummy

Property Value What it does

Name maker_clone_dummy

Parent !player We want to spawn the clone dummies in the same position as the

player, before he goes back to his original position. Because of that, we

want the entity maker to follow the player.

Point template To Spawn template_clone_dummy

 Create one env_entity_maker for the original dummy

maker_original_dummy

Property Value What it does

Name maker_original_dummy

Parent !player We want to spawn the original dummies in the same position as the

player, as he is about to teleport. Because of that, we want the entity

maker to follow the player.

Point template To Spawn template_original_dummy

 To make sure that the entities get parented correctly, we add the following outputs to the logic_auto:

logic_auto (Outputs)

My Output Target Entity Target Input Parameter Delay Only Once What it does

OnMapSpawn maker_clone_dummy SetParent !player 0.00 No

OnMapSpawn maker_original_dummy SetParent !player 0.00 No

 Like we did with the point_templates, move the env_entity_makers to the same position as the info_player_start

Spawning/despawning the original body

1. The original body will spawn right before we teleport to the Cloner. For that, we will use the relay_teleport_to_cloner:

relay_teleport_to_cloner (Outputs)

My

Output

Target Entity Target

Input

Parameter Delay Only

Once

What it does

OnTrigger maker_original_dummy ForceSpawn 0.00 No We need to spawn it before the player teleports,

since the env_entity_maker is going to move with

the player.

2. After we teleport, and the teleport timer runs out, we will go back to our original position. That is when we will kill the original_dummy. In

order to do that, we add the following output to the teleport_timer.

teleport_timer

My

Output

Target Entity Target

Input

Parameter Delay Only

Once

What it does

OnTimer original_dummy* Kill 0.00 No original_dummy* means that this output will kill any

entity in our level whose name starts with

"original_dummy". We write it this way as a precaution,

since sometimes the point_templates change the names

of the entities they spawn (based on the value of one of

their flags)

Spawning the clone

1. Before we go back to our original body, we are going to spawn a clone dummy. We can kill this clone dummy based on any conditions we

want (we could use it as a distraction for enemies, for example, and destroy it after a timer runs out). I will not cover the killing of the clone

dummy, but it is as easy as it was killing the original dummy (3.3)

2. We will put the logic to spawn the original dummy in the teleport_timer. As we did with the original_dummy, we will use the

env_entity_maker for this.

teleport_timer

My

Output

Target Entity Target Input Parameter Delay Only Once What it does

OnTimer maker_clone_dummy ForceSpawn 0.00 No

